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unlike modem trumpet mutes, the Baroque trumpet mute raises the playing pitch 
of the instrument. This pitch change is the subject of this paper. 

The Baroque mute is turned from hardwood and fits snugly into the bell. 
Air and sound pass through a relatively small-diameter hole bored through the center of 
the mute. As discussed by Keller and Smithers in previous papers,' musical examples 
and contemporary written material indicate that the pitch rise is a whole tone. However, 
trials with extant mutes have shown a pitch rise of only a semitone. In this paper, we 
report on a computational model of trumpet and mute which allows the calculation of the 
air-column resonance frequencies that determine the playing frequencies of the instru- 
ment. 

The Experiment 

Imagine that we have a trumpet and mouthpiece and that the mouthpiece is sealed 
at the rim, much as it is by the player's lips. Imagine further that a small volume of air 
is injected into the mouthpiece cup through a tiny hole. This air is periodically pumped 
in and out of the mouthpiece in a pure tone at a single frequency, just as if it were 
controlled by a sine-wave electronic oscillator. Suppose also that we have a small 
microphone inside the mouthpiece cup with which we measure the sound pressure 
produced there by the injected air. (This sound pressure will be a small sine-wave 
fluctuation in pressure superimposed on the much larger steady atmospheric pressure; 
the amplitude of the sound pressure will be proportional to the amplitude of the injected 
signal.) 

If we now slowly change the frequency of the injected air signal, while maintaining 
its flow rate constant, we will find that the sound pressure inside the mouthpiece will 
depend on the frequency, being larger at some frequencies, smaller at others. Those 
frequencies where the pressure response is large are the resonances where the instrument 
will help the player to sound the trumpet. At frequencies where the response is small, the 
instrument will actually hinder the vibration of the lips, compared with simply buzzing 
on the mouthpiece alone. 

The ratio of the sound pressure produced by the injected air to the rate of flow of 
the air is called the acoustic impedance. Because the sound pressure is proportional to 
the injected test signal, this ratio depends only on the properties of the instrument and 
is independent of the amplitude of the test signal. Thus the frequencies of the peaks in 
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acoustic impedance "looking into the mouthpiece" will, subject to some interpretation, 
tell us quite a lot about the playing frequencies of the instrument. 

This kind of experiment and the reasons why lip vibration is aided by high 
impedance are described in some detail in the excellent book by ~ e n a d e . ~  In this paper, 
the "experiment" was carried out on a computer simulating the trumpet and mouthpiece, 
with and without a mute. Some of the mathematical details of the computer model are 
given in Appendix A. 

Instrument Dimensions 

Early Baroque trumpets (sixteenth- and early seventeenth-century instruments) have a 
bell contour distinctly different from later instruments. Therefore, two instruments were 
modelled: a 1632 trumpet by Hanns Hainlein and a 1746 trumpet by Johann Leonhart 
Ehe 111. Dimensions were taken from drawings supplied by Robert Barclay. Numerical 
values used in the calculations for the mouthpiece, trumpets, and mute are given in 
Appendix B. 

The instruments were designed foraplayingpitch of A4 15 Hz. Playing pitch during 
the Baroque was rather variable from time to time and place to place. As a defacto 
standard,A 415 is commonly used today for Baroque and Classical performance. It has 
the great virtue of being almost exactly a semitone below the modem pitch standard of 
A 440, which makes it possible to build keyboard instruments such as portative organs 
which can be played either at A 415 or at A440 simply by moving the keyboard one note 
to the right or left. For the two trumpets, the length of the cylindrical tubing between 
mouthpiece and bell was initially taken from the drawings. Theselengths gaveaplaying 
pitch slightly sharper than A 415. Consequently, small adjustments (the computerized 
equivalent of tuning bits) were made to lower the pitch of the unmuted instruments very 
close to a scale built on harmonics of a D of 69.2 Hz, corresponding to an A of 4 15 Hz. 

Figure 1 

Cross section of the Hainlein bell (above) and the Ehe bell (below) with mute. Note 

the more gradual flare and larger bell throat of the earlier (Hainlein) bell. The two 


bells are drawn to the same scale and the rims are shown in the same plane in order 

to show how much farther the mute is inserted into the Hainlein bell. 
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The Ehe trumpet has a bell contour very similar to a modem B-flat piston valve 
instrument, but slightly smaller in diameter throughout. The Hainlein trumpet has a 
more gradually flaring bell contour which could well be derived from the shape of an 
animal horn. At the bell rim, the Ehe is about a centimeter larger in diameter, but at 
distances more than a few centimeters upstream, the Hainlein is the larger, until just 
before the cylindrical tubing. The Hainlein has a cylindrical bore of 10.5 mm.; the Ehe 
is slightly larger at 11.0 mm. 

Mouthpiece dimensions were taken from a mouthpiece owned by Fred Holmgren. 
The mute dimensions used in this study were taken from a mute made and owned 

by Fred Holmgren. It was turned to fit a trumpet owned by Mr. Holmgren, made by 
Ronald Collier and similar to the Ehe. It is of the one-sided variety and is turned from 
maple. Its dimensions are typical of the mutes in the Prague collection. The internal 
shape is patterned after a drawing by Altenburg. 

A given mute will be inserted farther into the Hainlein bell than the Ehe due to its 
larger throat. The pitch change due to muting is therefore expected to be greater for the 
Hainlein than for the Ehe. Figure 1 shows a cross section of the mute in the two bells. 

Impedance Calculations 

Figure 2 shows the impedance magnification of the Ehe trumpet; that is, the ratio 
of its impedance at the mouthpiece to the impedance of an infinitely long cylindrical tube 
whose diameter is the same as the mouthpiece cup. The frequency scale is logarithmic, 
so that the spacing between impedance peaks is proportional to the musical interval 
between them. Note that the height of theresonant peaks is greatest in the vicinity of 900 
- 1000Hz,near the twelfth or thirteenth resonance of the D trumpet. This is due to the 
mouthpiece. A cup mouthpiece has its own characteristic resonance (the pitch one hears 
when slapping the rim against the palm of the hand). Below this resonance the 
mouthpiece magnifies the input impedance of the remainder of the instrument, the 
greatest magnification occurring near the mouthpiece resonance. This is one of the two 
major factors influencing the tonequality; the other is the radiation properties of thebell. 
Those harmonics in the radiated sound lying near 900 - 1000 Hz will be the strongest. 
For example, if one plays the written middle C, its third harmonic will coincide in 
frequency with the twelfth resonance of the instrument (if the instrument is properly in 
tune with itself) and will be stronger than either the fundamental or the second 
harm~nic.~ 
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Ehe Trumpet 

Frequency (Hz) 

Figure 2 

The calculated impedance magnification of the 1746 Ehe trumpet. 


Note also that the lowest air-column resonance lies below 50 Hz, well below the 
nominal 69.2 Hz fundamental of the trumpet. In fact, the first three resonances are 
substantially lower than the frequencies of the notes the player produces. This is 
characteristic of all brasses, more so for those like the natural trumpet which have a high 
percentage of cylindrical tubing than for, say, the flugelhorn and euphonium. 

The fact that the player can produce the expected low-register pitches, albeit 
sometimes with difficulty, withoutthe helpofaresonanceattheplaying frequency is due 
to an effect discovered by the French physicist Henri Bouasse, termed sonsprivilbgib, 
orprivileged tones.4 The essenceof this is that there need not bean air-column resonance 
near the playing frequency provided there are a sufficient number of resonances close 
to harmonics of the playing frequency. The privileged-tone effect is responsible for the 
production of what the hand-horn player terms "factitious tones7', notes not in the 
harmonic series of the instrument, but an octave below "normal" tones.5 The interaction 
with higher resonances increases with loudness, so that one normally finds the pitch 
stability of the lower notes to be better when they are strongly played. It is not widely 
appreciated that all brass instruments, modem as well as ancient, make use of the 
privileged-tone effect in the low register. For example, the modem horn player can play 
a complete harmonic series, right down to the fundamental of the F horn, even though 
the lowest air-column resonance, which one would like to associate with that note, is 
about half an octave lower. 
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Above 1000 Hz, the height of the impedance peaks dies away, both because the 
magnification produced by the mouthpiece is declining and because the damping, 
particularly that component caused by radiation from the bell, is increasing. 

75 1 Muted Ehe Trumpet 

25 50 100 200 400 800 1600 
Frequency (Hz) 

Figure 3 

The calculated impedance magnification of the muted 1746 Ehe trumpet. 


Next consider the input impedance of the same trumpet muted, shown in Figure 3. 
Superficially, it appears very similar to the unmuted trumpet. However, there are some 
important differences. Note that the very highest-frequency impedance peaks (above 
1600Hz) arehigher for the muted trumpet because radiation damping has been reduced. 
Note also a peculiar disruption of the regular pattern of peaks and valleys at about 1600 
Hz. This is the frequency at which the hole bored down the center of the mute becomes 
one-half wavelength long. 

All the resonance frequencies have been lowered by the introduction of the mute. 
The second peak also appears low in height in comparison with its neighbors. Since all 
resonances have been lowered in frequency by the mute, why then does the player say 
that the pitch of the instrument has been raised? The answer lies in the fact that the 
relationship between the frequencies of the peaks has also changed (although this is 
difficult to seepurely by examining the figure). For example, the interval between the 
fifth and sixth peaks is about a major third, which is the interval one expects to find 
between the fourth and fifth harmonics of the instrument. It is as though oneof the lower- 
frequency peaks is an intruder and the fifth peak should be considered the fourth, and so 
on. This is in fact the case, although it is impossible to say which of the peaks is the 
"extra" one. 
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The mute itself has a Helmholtz resonance (named after the nineteenth-centuryGerman 
physicist and physiologist) at about 250 Hz, between the third and fourth impedance 
peaks of the unmuted trumpet. The Helmholtz resonance is a "bottle" resonance, as in 
the resonance whose frequencyonehears when blowingacrossthe neck of a bottle. The 
hole bored through the body of the mute is the "neck" of thebottle,and the "body" is the 
cup at the end of the mutewith the upstream end closed. Thehalf-waveresonance of the 
hole through the mute at about 1600Hz is thus the second resonance of the mute. If we 
consider the trumpet and mute to be separate, rather than parts of a single system, then 
we can argue that both the fourth (214 Hz) and fifth (288 Hz) peaks of Figure 3 are 
"fourth" modes of thetrumpet. At thefourthpeak, themutelooksmassiveto thetrumpet, 
at the fifth it looks spring-like. Thus the fourth resonance of the unmuted trumpet (269 
Hz) has been split into a pair of resonances, one lower than the original frequency 
because the mute has loaded the open end of the instrument with additional mass, the 
other higher because the mute has stiffened the system. Of course, to some extent this 
argument is sophistrybecause the trumpetand mute form a singlevibrating system and 
should not artificially be separated. 

Ehe Trumpet 
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Figure 4 
Relative intonation of the 1746 Ehe trumpet. 
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This"off by one" modenumberingambiguityliesat the heart of the two-centuryold 
disagreementaboutthepitch change of the fully-stoppedhorn.6 For the trumpet player, 
the mute iseither in orout,sothedegreeofmuting is not an issueasit is in hand-stopping. 
He or she finds a sharpened harmonic series except that there may be some peculiar 
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behavior in the low register (but that is often true for the unmuted natural trumpet as 
well!). 

If one renumbers the peaks of the muted trumpet above the Helmholtz mute 
resonance, the fifth becoming the fourth, etc., then the resonances from about the "new" 
fourth peak upwards fit the harmonic series of a sharper instrument reasonably well. 
Figure 4 shows the resonance frequencies of the open and muted Ehe trumpet. The 
frequencies have been divided by the "effective mode number" to give an "effective 
fundamental frequency". The effective mode number for the open trumpet is just the 
number of the peak; for the muted trumpet, it is one less than the peak number, i. e., the 
muted modes have been renumbered as decribed above. In such a figure, if all resonances 
followed the harmonic series exactly, the plotted points would all lie on a horizontal line. 

For the open Ehe trumpet, modes from the sixth upwards are very nearly harmoni- 
cally related. Below the sixth mode, the resonance frequencies are flatter. The third is 
about a semitone low, and the first and second are off the bottom of the graph. 

For the muted Ehe trumpet, the relative intonation is not as good. For the important 
range between the sixth and twelfth harmonics, the air-column resonance frequencies 
are very nearly a semitone sharper than for the open instrument. Above this, the 
resonances are somewhat flatter. A quick check with Fred Holmgren playing two 
trumpets similar to the Ehe showed a pitch rise of very close to a semitone on the eighth, 
ninth, and tenth harmonics with the mute modelled here. Above the tenth harmonic, the 
muted instrument was slightly flatter, as would be expected from Figure 4. 

Hainlein Trumpet 75 1 
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Figure 5 
The calculated impedance magnification of the 1632 Hainlein trumpet. 
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Figures5and 6show the input impedance of the Hainlein trumpet, open and muted, 
respectively. Again, peaks near 1000Hz are high but less so than for the Ehe for the 
unmuted trumpet. This is caused partly by the smaller-bore cylindrical tubing, which 
introduces more damping, and partly by the bell shape. Any bell radiates very poorly 
at low frequencies and very well at high frequencies. The difference between our two 
bells lies in the width of the transition from poor to efficient radiation as frequency 
increases. The more gradual and somewhat moreconical flare of the Hainlein bell begins 
to radiate more efficiently at lower frequencies than the Ehe bell. As Benade says, "The 
conical instruments begin to leak sound at lower frequencies than do their flaring cousins 
having the same bell diameter"? The Hainlein's smaller diameter at the rim also means 
that it does not achieve maximum radiation efficiency until a higher frequency than the 
Ehe. In other words, the Hainlein bell switches from a poor radiator to a good one more 
gradually than the he.^ 

Hence, increased damping due to the smaller bore and higher radiation reduces the 
height of the resonant peaks for the unmuted Hainlein relative to the Ehe in the region 
near 1000Hz. Basedon this, onewould expect the tone of theHainlein tobe less "brassy" 
than the Ehe. 

Muted Hainlein Trumpet 75 1 


Frequency (Hz) 

Figure 6 
The calculated impedance magnification of the muted 1632 Hainlein trumpet. 

With the mute in place, the heights of the impedance peaks for the Hainlein are 
comparable to those for the Ehe, since radiation damping is now similar for both 
instruments. As in the Ehe, the anomaly produced by the second resonance of the mute 
occurs at about 1600Hz, and the height of the second impedance peak is relatively low. 
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Figure 7 
Relative intonation of the 1632 Hainlein trumpet. 

Figure 7shows the normalized resonance frequencies of the Hainlein trumpet. The 
open trumpet is less well in tune with itself than the Ehe, although the fourth and fifth 
resonances are less flat compared to the higher modes. The mute indeed sharpens the 
Hainlein more than the Ehe, but still well short of a whole tone. 

One additional calculation was performed in an attempt to sharpen the muted 
trumpet yet more. The cup at the upstream end of the mute was assumed to be filled, so 
that the central tube carried through to the end of the mute. The resulting intonation 
pattern for the Hainlein trumpet was very similar to Figure 7 except that all the muted 
frequencies were sharper by about one-tenth of a semitone. The additional sharpening 
is still insufficient for the mute to raise the pitch by a whole tone. 

Conclusions 

A pitch rise of approximately a semitone on the Ehe is observed in the computer 
experiment just as it has been by the player. The Hainlein gives a greater sharpening, 
but still not close enough to a whole tone to be musically useful. It would be desirable 
to validate this computer model by comparing experimental measurements of imped- 
ance and air-column resonance frequencies with those predicted by the model. 

The mystery is still unsolved. It might be possible to make a smallerdiameter mute 
that would produce a whole-tone pitch rise on a D trumpet, particularly on the older bell 
contour, but no historical examples appear to exist. Such a mute would have to fit the 
bell at least 22 cm upstream of the bell rim. The longest of the Prague mutes is 15.8cm 
overall; a whole-tone mute of that length would be difficult to insert and would need a 
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cord to retrieve it from the depths of the instrument. One also wonders about (relative) 
intonation with such a mute. 

If the mutes in the Prague collection could be accurately dated to the eighteenth 
century, then perhaps it would be safe to conclude that they were intended to sharpen the 
pitch by a semitone on trumpets with the more modem bell contour. But where then are 
the mutes that must have been used by trumpeters of the era of Monteverdi and Fantini? 
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Appendix A: Modelling the Trumpet and Mute 

The purpose of any scientific model is to make a complicated problem tractable by 
simplifying it while retaining enough of the original problem that the model produces 
valid information. 

The propagation of sound in air is described by a differential equation called the 
wave equation. Essentially, the wave equation tells how a very small volume of air is 
moved and compressed by forces exerted on it by its neighbors. Ideally, one would 
analyze the behavior of sound within a flaring horn by solving the wave equation in all 
three space dimensions. This is practicable only for a limited number of shapes, none of 
which closely resembles a trumpet. Fortunately, brass instruments are much longer than 
they are wide, so that the diameter of an instrument is much smaller than the wavelength 
of sound at frequencies throughout the playing range of the instrument. Since neither 
sound pressure nor velocity can vary appreciably over distances much less than a 
wavelength, we can obtain quite good results by assuming that sound travels only along 
the axis of the instrument. That is, we assume the existence of "wavefront surfaces," 
surfaces across the horn on which sound pressure and velocity are constant in both 
amplitude and phase. The three-dimensional wave equation then reduces to a differen- 
tial equation in one space dimension, distance measured along the axis of the instrument. 
If one neglects internal losses (viscous and thermal damping at the walls of the horn), at 
radian frequency w the resulting equation is 

where primes indicate differentiation with respect to distancex measured along the axis 
of the instrument, p(x) is the sound pressure and S(x) the area of the wavefront as a 
function of x, k =w/c is the wavenumber, and c is the speed of sound. 



This equation is called the Webster horn equation in most acoustics texts, after the 
1919 paper by A. G. ~ e b s t e r . ~It actually dates from theeighteenth century, when it was 
independently derived by Euler, Lagrange, and Daniel ~emou1li.l~ Euler even synthe- 
sized a bell contour fora brass instrument by making some reasonableassumptions about 
what properties are desirable in a musical instrument. The resulting shape is closer to 
a horn bell than a trumpet.l l 

The area of the wavefronts S(x)is usually taken to be the areaof a planecross-section 
of the instrument. This is a good assumption throughout most of a brass instrument, but 
is questionable near the mouth of a rapidly flaring bell. Benade and ~ansson l~  have 
addressed the accuracy of this. After a careful theoretical and experimental analysis, 
they conclude that the calculation of resonances using the plane-wavefront assumption 
"consistently overestimates the resonance frequencies by a small amount" but is 
"sufficient to obtain resonances with 0.5% accuracy". Since 0.5% is less than one-tenth 
of a semitone and the purpose of the present paper is to investigate changes in resonance 
frequencies brought about by the introduction of a mute, the plane-wave calculation is 
used here. 

However, internal losses cannot safely be neglected, as it stands, Equation 1 is 
unsuitable. The damping causes the phase velocity of sound within the instrument to 
increase with frequency to a small but musically significant degree throughout the 
playing range. This lowers the resonance frequencies from the values one would 
calculate without damping. 

Losses are incorporated into the model by replacing Equation 1 with the so-called 
"telegrapher's equations", a pair of simultaneous first-order differential equations 
describing the behavior of sound pressurep and volume velocity U.Such equations are 
often used in the analysis of electrical transmission lines; a brass instrument may be 
considered as an acoustic transmission line. 

where L is the series inertance (per unit length of the transmission line), R the series 
resistance, C the shunt compliance, and G the shunt conductance. All four quantities 
are functions of the cross-section S(x). The values of L, R,  C, and G are taken from the 
paper by ~ e e f e . l ~  The inertance L represents the mass of the vibrating air and the 
compliance C its compressibility. The quantity R measures the loss of energy through 
friction between the moving vibrating air and the wall of the tubing; G measures 
vibratory energy lost through heat conduction between the tubing and air compressed 
(and thereby heated) or rarefied (and cooled) by its vibration. The telegrapher's 
equations reduce to the Webster equation if losses are neglected (i.e.,if R = 0and G = 
0) Both R and G are inversely proportional to the tube diameter, so the narrower parts 
of an instrument account for most of the internal losses. 

The heights of the impedance peaks (and the depths of the intervening valleys) are 
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determined by the fraction of acoustic energy put into the mouthpiece that is reflected 
back to the mouthpiece to reinforce (or cancel) the vibration. It is therefore important 
to account correctly for the amount of energy lost, either within the instrument or by 
radiation from the bell. 

For a circular cylindrical tube of uniform cross-section, Equation 2 can be solved 
exactly. The computational scheme used here starts from this solution rather than 
attempting to solve Equation 2 directly for a flaring instrument. 

The smoothly flaring instrument is replaced by a piecewise cylindrical contour, a 
series of uniform tubes of equal length, each tube matching at its midpoint the diameter 
of the original instrument, as illustrated in Figure 8. One can see that if the number of 
cylinders is large (that is, if each cylinder is sufficiently short), this "stairstep" contour 
can be made to approach the original as closely as desired. A transmissionmatrix relating 
sound pressurep and volume velocity U at the ends of each of these short cylinders can 
be found by solving Equation 2. The transmission matrix of the flaring section is then 
just the product of the transmission matrices of the individual cylinders. 

Axial Distance 

-smooth contour 
......... 4-segment cylindrical approximation 

Figure 8 
Piecewise cylindrical approximation of a smoothly flaring horn. 

This method is relatively crude unless the number of cylinders is very large, but it 
can be refined using a technique of some antiquity called "deferred approach to the 
limit," popularized in the last quarter century or so in theRomberg method of numerical 
quacirature.l4 This works as follows. The error introduced by the stairstep approxima- 
tion depends on the step size. In particular, it is known that the error is an even function 
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of the length of each step. The transmission matrix of a tapered section is found for 
several "stairstep" horns with different numbers of steps, giving slightly different 
results. The differences between the different solutions can be used to estimate the error. 
The results are then combined in such a way as to remove most of the error inherent in 
the the piecewise cylindrical approximation. 

For example, suppose F is some quantity we wish to find, say, the value of one 
of the elements of the transmission matrix. Suppose the length of each segment in a 
stairstep approximation is a and that the approximate solution is C(a) . Because the 
error is an even function of a, we can express the error as a power series with only 
even powers of a, 

where the values of the coefficients c,, are as yet unknown. 

If we evaluate C(a ) for two segment lengths a = h and a = 2h, then 

The contribution of the hZ term to theerror can be removed without ever evaluating 
c2 by multiplying the first of these equations by 4 and subtracting: 

If h is small enough, the left-hand side of Equation 5 will be a more accurate 
approximation of F than C (h) and will have been obtained with only about 50%more 
labor. If C (h) is evaluated for three different segment lengths, a similar procedure can 
be used to eliminate the h4error term as well as the h2emr term, etc. 

Convergence of this method is rapid. Comparison with an exact solution of 
Equation 1, where one is known (e. g., for certain horn contours for lossless horns), 
shows that the numerical accuracy is better than is justified by the plane-wave 
approximation. 

Using this method, the transmission matrix is then calculated independently for the 
various components of the instrument: the mouthpiece, the cylindrical tubing that 
constitutes more than two-thirds the length of the Baroque trumpet, and the bell (with 
and without a mute). The overall transmission matrix is found by multiplying the 
matrices of the components. Sound pressure and volume velocity at the input (mouth- 
piece) are thus related to those at the output (bell) by an equation of the form 



92 HISTORIC BRASS SOCIETYJOURNAL 

where the four elements of the transmission matrix are computed as functions of 
frequency. 

The bell end is terminated with a radiation impedance Z ,= p, 1 U,. This 
impedance relating p ,and U, accounts for the loss of sound energy into the room and 
for the inertia of the airjust outside the bell of the trumpet. The transmission matrix then 
transforms the radiation impedance Z,, to the acoustic input impedance Zin =pint Uin at 
the mouthpiece, which is the quantity we seek. 

The actual radiation impedance seen by a flaring horn is unknown; sound radiation 
from horns is not yet well understood theoretically. The radiation impedance used here 
is that of an unflanged circular tube of the same diameter as the end of the bell. This is 
known (by comparison with experiments on real instruments) to underestimate the 
amount of energy radiated, particularly for a rapidly flaring bell. For the muted trumpet, 
the radiation impedance is that for an unflanged tube whose diameter is the same as the 
hole bored through the mute. Internal losses and radiation loss both increase with 
frequency, but for the unmuted trumpet radiation loss increases much more rapidly 
above the playing range. Throughout the playing range, radiation loss is much less than 
internal viscous and thermal damping; thus, only for very high harmonics will the height 
of the calculated impedance peaks be appreciably higher than their actual values. (It is 
perhaps surprising that most of the acoustic energy produced by the player never escapes 
from the instrument as radiated sound, but is instead consumed by viscous and thermal 
damping at the walls of the tubing.) 

This model serves well to calculate resonance frequencies, but ignores many 
subtleties that are important to the player and listener. For example, in a real trumpet, 
the thickness and softness of the metal and the bracing affect the tone quality, as do 
details of the shape of the mouthpiece. 

The calculations were carried out on a Macintosh SE/30 computer. Mathematica 
(Wolfram Research) was used for the numerical modelling, FreeHand (Aldus) for 
drawing Figure 8,and Excel (Microsoft) for analyzing and smoothing the measured bell 
dimensions. The remaining figures were generated using software written by the author. 

Appendix B: Contours of Mouthpiece, Trumpets, and Mute 

Dimensions of mute and mouthpiece are from the examples supplied by Fred 
Holmgren. Dimensions of the trumpets are from drawings supplied by Robert Barclay. 
Although most of the dimensions are given here to a precision of 0.01 cm, this should 
not be construed as representing the accuracy of the measurements. 



The mouthpiece 

The mouthpiece has a hemispherical cup (diameter 19.0 mm) and a conical 
backbore (9.0 cm long, minimum diameter 4.3 mm, maximum diameter 9.2 mm). The 
full cup volume was used in the calculations, even though under playing conditions the 
player's lips would protrude into the cup, somewhat reducing its volume. Some of the 
calculations were repeated using two-thirds of the cup volume; the computed air-column 
resonance frequencies were slightly higher than with the full cup volume, but the 
intervals between them were essentially unchanged. 

The trumpets 

The trumpet is comprised of three sections: a cylinder made up of the two straight 
tubes and the two bows, a cone between the second bow and the boss, and the bell flare 
between the boss and the bell rim. (The boss is a sleeve, often decorated with an ornate 
knob, that covers the joint between the cone and the bell flare. The internal bore is 
smoothly flaring and does not follow the external contour of the knob.) 

Table 1 gives the dimensions of the cylindrical and conical sections for the two 
trumpets. 

Trumpet 
Size in cm of Hainlein Ehe, 

cylinder length 163.77 164.35 
cylinder diameter 1.05 1.10 
cone length 28.98 36.00 
cone diameter (small end) 1.05 1.10 
cone diameter (large end) 1.57 1.36 

Table 1 
Dimensions of cylindrical and conical sections. 

For the bell flare (the only part of the trumpets with a curving contour), the diameter 
of the bore was measured every 1.27 cm (0.5 inch) from the bell rim to the boss. These 
numbers, with their inevitable errors, were entered into a spreadsheet on the computer. 
First and second differences were calculated toreveal irregularities in the measurements. 
The measured values were then adjusted to smooth the contour. A cubic polynomial was 
used to interpolate values of the diameter between the measured points. For all points 
other than those in the final segments at the ends, the cubic passed through two points 
on either side of the interpolated point. Obviously, at the ends, it was necessary to have 
one point (the end diameter) on one side and three points on the other. 



94 HISTORIC BRASS SOCIETYJOURNAL 

Distance horn 

Bell Rim (cm) 


0.00 


1 .27 

2.54 


3.81 


5.08 


6.35 


7.62 


8.89 


10.16 


11.43 


12.70 


13.97 


15.24 


16.51 


17.78 


19.05 


Bell Hare Diameter (cm) 
Hanlein Ehe 

9.65 10.61 

8.17 7.25 

6.87 5.34 

5.90 4.16 

5.22 3.53 

4.64 3.13 

4.17 2.92 

3.80 2.76 

3.54 2.64 

3.38 253 

3.23 2.42 

3.09 2.33 

2.97 2.23 

2.85 2.14 

2.74 2.04 

2.65 1.95 

Distancefrom 

Bell Rim (an) 


20.32 


21.59 


22.86 


24.13 


25.40 


26.67 


27.94 


29.21 


30.48 


31.75 


33.02 


34.29 


35.56 


36.83 


38.10 


39.37 


Bell Hare Diameter (cm) 
Hanlein Ehe 

2.56 11.87 

247 1.78 

238 1.70 

2.29 1.62 

2.21 1.55 

2.12 1.49 

204 1.44 

l.% 1.40 

1.89 1.38 

1.82 1.35 

1.75 

1.69 

1.64 

1.60 

1.57 

1.55 

Table 2 

Diameter of bell flares. 


The length of the bell flare from the center of the boss to the bell rim was 38.33 cm 
for the Hainlein trumpet and 31.30 cm for the Ehe. Table 2 gives the values used in the 
interpolation. Note that the last value (farthest from the bell rim) is slightly beyond the 
length given above. This was to facilitate the interpolation by having equally spaced 
samples. The computer program switched from the bell flare to the cone at the stated 
length. 



The mute 

Theoutsidediameterof the mute where it meets thebell is 3.10 cm. Theinternal diameter 
of the cup at that end (the upstream end) is 2.95 cm. The cup was taken to have an 
elliptical contour; the depth of the cup (major semiaxis of the ellipse) is 2.71 cm. The 
diameter of the hole bored through the mute is 0.635 cm and its length is 10.6 cm. The 
cup at the downstream end of the mute was ignored. While it may have a slight effect 
on the tone color of the muted trumpet, its effect on resonance frequencies is negligible. 

NOTES 
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meaning is intended. 
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the player perceives as sharpening the instrument. There is no abrupt transition from one regime 
to the other, except perhaps inthe player's mind. Backus (see J. Backus, "Input impedancecurves 
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for the brass instruments," Journal of the Acoustical Society of America 60 (1976): 470480) 
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More recent computer simulation of the stopped horn (see Pyle, "Factitious Tones and Hand- 
Stopping:" 3643)produced results that agreed well with the earlierexperiments of the author (see 
Robert Pyle, "Pitch change of the stopped French horn:" 1034). Pulse reflection measurements 
show that in the fully-stopped horn, the principal reflection that returns to reinforce the lip 
vibration comes from the position where the mute or hand meets the bell (the upstream end of the 
mute; [see Robert Pyle, "A time-domain study of the stopped horn." Journal of the Acoustical 
Society ofAmerica, 65 (1979), S73 (Abstract only): 11; and Pyle, 'Factitious Tones and Hand- 
Stopping:" 36-43]). Thus it is not incorrect for the hornplayer to claim that full stopping has 
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Robert Pyle first became interested in musical acoustics when his high-school physics 
teacher lent him Dayton Miller's book, "The Science of Musical Sounds". He pursued 
this interest through college and graduate school, eventually writing a doctoral 
dissertation in appliedphysics about horns, albeit solid horns for ultrasonics rather than 
the musical variety. After playing a variety of woodwind and brass instruments through 
high school, he settled on the horn, which he plays in community orchestras and bands. 
Since 1965, Dr. Pyle has worked in both acoustics and computer activities at Bolt, 
Beranek, and Newman in Cambridge, Massachusetts, where he currently earns his 
living by analyzing the peflormance of wide-area computer networks. Dr. Pyle is the 
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he has served several terms on the Technical Comm'ttee for Musical Acoustics of the 
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